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A novel parallel tool for large-scale image enhancement/reconstruction and postprocessing of radar/SAR sensor systems is
addressed. The proposed parallel tool performs the following intelligent processing steps: image formation, for the application of
different system-level effects of image degradation with a particular remote sensing (RS) system and simulation of random noising
effects, enhancement/reconstruction by employing nonparametric robust high-resolution techniques, and image postprocessing
using the fuzzy anisotropic diffusion technique which incorporates a better edge-preserving noise removal effect and faster diffusion
process. This innovative tool allows the processing of high-resolution images provided with different radar/SAR sensor systems
as required by RS endusers for environmental monitoring, risk prevention, and resource management. To verify the performance
implementation of the proposed parallel framework, the processing steps are developed and specifically tested on graphic processing
units (GPU), achieving considerable speedups compared to the serial version of the same techniques implemented in C language.

1. Introduction

The amount of data acquired by imaging satellites has been
growing steadily in recent years. Many techniques of parallel
computing and distributed systems are used by such imaging
systems in novel remote sensing (RS) applications, which
require timely responses for swift decisions. Relevant exam-
ples include monitoring of natural disasters like earthquakes
and floods, military applications, tracking of man-induced
hazards, forest fires, oil spills, and other types of biological
agents. In addition, the acquisition of large-scale RS images
with radar/SAR systems collects huge data of information [1].
This amount of data requires significant high computationally
resources for applying image processing techniques in order
to improve the quality of the images. Therefore, one solution
to achieve the required computationally demanded issue
goes through parallel approaches in a high performance
computing (HPC) sense using PC clusters, grids, and clouds,
among others [2]. In this regard, significant efforts have been
realized to develop parallel tools for processing remotely

sensed data [3-5]. In [3], Bernabé et al. present a classifica-
tion for remotely sensing imaginary tool which implements
the well-known unsupervised k-means and the ISODATA
clustering techniques with Graphic Processing Units (GPU).
However, this tool is focused only on classification issues.
Another RS tool, developed by Shkvarko et al. [4], presents
a simulation software for intelligent postprocessing of large
scale RS imaginary. However, only computer simulations
of the enhancement/reconstruction regularization of RS
images, without parallel implementations, were carried out.
On the other hand, an end-to-end image simulation tool for
space and airborne imaging systems, called PICASO, was
developed in [5]. This tool seeks to optimize image quality
within real world constrains, but the algorithms are not
implemented in a parallel scheme.

In this paper, a new parallel tool for processing remotely
sensed images is addressed. The proposed parallel tool
performs the following processing steps: image enhance-
ment/reconstruction and postprocessing. First, the image
formation technique applies different system-level effects
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in order to degrade the images (i.e., along the range and
azimuth directions) and adding random noising effects.
Second, the high-resolution enhancement/reconstruction of
the power spatial spectrum pattern (SSP) of the wave
field scattered from the extended remotely sensed scene
is employed via the descriptive regularization approach
with the Robust Space Filter (RSF) and the Robust Adap-
tive Space Filter (RASF) algorithms [6]. Third, the fuzzy
anisotropic diffusion post-processing technique is applied.
This last step is performed via the modification of the well-
known Perona-Malik (PM) anisotropic diffusion technique
[7] via the incorporation of fuzzy logic sets. The model-
free fuzzy anisotropic diffusion post-processing technique,
the “model-based” enhancement/reconstruction regulariza-
tion algorithms, and the image formation step are unified
into a new tool for providing intelligent processing of RS
imagery.

The set of steps described above will provide to the
end user a tool with the aim of improving the quality of
the RS images acquired from radar/SAR systems; however,
there is an important drawback for its high computational
cost. Therefore, the proposed parallel tool is developed using
GPU. Nowadays, these specialized hardware devices have
evolved into a highly parallel, multithreaded, many-core
processors with tremendous computational speed and very
high memory bandwidth [2]. As a result, the proposed
framework provides very powerful data processing and anal-
ysis capabilities coupled to the parallel computing and data
resources in a manner that is transparent to the user.

The rest of the paper is organized as follows. In Section 2,
a brief summary of the intelligent data processing steps

employed in the proposed system is presented. The GPU-
based data processing techniques for the parallel algorithm
implementation is performed and detailed in Section 3. In
Section 4, the results of the proposed approach and the
performance analysis with the GPU platform are presented.
The application of two case studies for the intelligent data
processing of large-scale images with the proposed parallel
tool is included in order to verify the accuracy and the time
performance of the system. Finally, the concluding remarks
are presented in Section 5.

2. Intelligent Data Processing Design Steps for
Remote Sensing Imaging Problems

In this section, we present a brief overview of the general pro-
cessing chain employed in this study. The addressed method-
ology for real-time formation/enhancement/reconstruction/
post-processing of the RS imagery acquired with radar/SAR
systems is described. Figurel presents the design flow
methodology considered in this work.

2.1 Image Formation. In this section, we present the sum-
mary of the RS imaging problem that was previously devel-
oped in [6, 8]. Let us consider the measurement data wave
field u(y) = F(y) + n(y) modeled as a superposition of the
echo signals F and additive noise # assumed to be available
for observations and recordings within the prescribed time-
space observation domain Y > y, wherey = (t,p)’
defines the time-space points in the observation domain Y =
T x P. The model of observation wave field u is specified
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by the linear stochastic equation of observation (EO) with
operator form [9]: u = Fe+mn e € E;un € U; F :
E — U. Next, we take into account the conventional finite-
dimensional vector form approximation [6, 8, 10] of the
continuous-form EO, where the data acquisition model is
defined by a set of equations as

u™ = F™e + n(m), (1

for M methods/systems to be aggregated/fused, that is, m =

1,..., M, where F"™ represent the system/method degra-
dation operators usually referred to as the imaging system
point spread functions (PSF), and vector n™ represents
the noise in the actually acquired image, respectively. The
mean b = vect{(e,,e;); k = 1,...,K} of the random
scattering vector e has a statistical meaning of the average
power scattering function traditionally referred as the spatial
spectrum pattern (SSP), where the asterisk indicates the
complex conjugate. This SSP is a second-order statistics of the
scattered field that represent the brightness reflectivity of the
image scene, represented in a conventional pixel format over
the rectangular scene frame [9].

2.2. Image Enhancement/Reconstruction. In this stage, we
estimate b as a discrete-form representation of the desired
SSP over the pixel-formatted object scene remotely sensed
with an employed array radar/SAR. Thus, one can seek to
estimate b = {ﬁe}diag given the data correlation matrix R,
preestimated by some means, for example, via averaging the
correlations over L independent snapshots [11 12]; ﬁu =Y =
aver,e {ugyupy} = (I/L) Py ugyu(y, and by determining the
solution operator that we also refer to as the signal image
formation operator (SO) G such that

b= (R}, ={GYG'},, )

diag
Such image enhancement/reconstruction processing tasks
can be mathematically formalized in terms of the following
optimization problem [9]:

R@G)}, 3)

G=arg min [ min
G 2
(1A 0y <6

in which R(G) = tr{(GF-I)A(GF-I)"} + «atr{GR,G"} rep-
resents the objective function where the first term (systematic
risk component) is performed over the randomness of the
distorted SFO G with the uncertainty conditioned by the sta-
tistical bound (||A[*) o) < 6. The regularization parameter
« balances the systematic risk component (specified by the
first term) and the fluctuation risk component (specified by
the second term) in R(G), while A induces the weighted
metrics structure in the systematic risk. The regularization
parameter « and the invertible weight matrix A determine
the user adjustable “degrees of freedom.”

In this regard, the solution to the optimization problem
derived in previous studies [8, 13] is described as follows:

-1
G=KF'R,, whereK=(F'F+aA™") F'R;, (4

where K defines the so-called reconstruction operator (with
the regularization parameter & and stabilizer A™'), and
R_' is the inverse of the diagonal loaded noise correlation
matrix [14], that is, R, = NI, attributing the unknown
correlated noise component. Thus, for different methods,
different cost functions are employed. Here we exemplify two
practically motivated high-resolution reconstructive imaging
techniques [6, 15 16] that will be used at the parallel toolbox:
(i) the robust spatial filtering (RSF) and (ii) the robust
adaptive spatial filtering (RASF) methods.

(i) RSE. The RSF method implies no preference to any
prior model information (i.e., «A~" = I) and balanced
minimization of the systematic and noise error mea-
sures by adjusting the regularization parameter « to
the inverse of the signal-to-noise ratio (SNR). In that
case the SO becomes the Tikhonov-type robust spatial
filter (RSF) [6]: Gggr = GV = (F'F+aA™) " FY,
in which the RSF regularization parameter aggp is
adjusted to a particular operational scenario model,
namely, apse = (Ny/b,) for the case of a certain
operational scenario, where N, represents the white
observation noise power density and b is the average
a priori SSP value.

(ii) RASF. In this method, o and A are adjusted in an
adaptive fashion following the minimum risk strategy
[9], thatis, kA™! = D = diag(lA)), the diagonal matrix
with the estimate b at its principal diagonal, in which
case the SO becomes itself the solution-dependent
operator that results in the following robust adaptive
spatial filter (RASF): Gpagr = G? = (F'R'F +

5_1)71F+R;1. In all practical RS scenarios (and,
specifically, in SAR uncertain imaging applications
[17-19]), it is a common practice to accept the robust
white additive noise model, that is, R, = NI,
attributing the unknown correlated noise component.

Any other feasible adjustments in the degrees of freedom (the
regularization parameter o and the weight matrix A) provide
other possible SSP reconstruction techniques that we do not
consider in this study.

2.3. Image Postprocessing. In this section, the aggregation
of the fuzzy anisotropic diffusion and the regularization-
based methods are described for the reconstruction/post-
processing image processing. The authors consider that the
aggregation of such methods in the proposed parallel toolbox
increases the flexibility and robust edge definition in the
reconstructed image. That is, the noise and the edges are both
high frequency image components, and the conventional
image enhancement/reconstruction techniques oriented for
large-scale remote sensing imaging do not work well for
edge-preserving smoothing of image corrupted with additive
and speckle noise (i.e., a tradeoff between sharpening and
blurring must be selected). In this study, the gradient as the
edge factor in the anisotropic diffusion is replaced by a rule-
based fuzzy anisotropic diffusion. Also, a fuzzy inference



system is employed to replace the edge stopping function
providing a better control on the diffusion process.

The aggregation of the reconstruction/post-processing
framework offers the possibility to preserve high spatial
resolution performances via anisotropic diffusion image
post-processing, which implies anisotropic regularizing win-
dowing (WO) over the reconstructed solution in the image
space. Next, the following equation represents the celebrated
Perona-Malik anisotropic diffusion method [7]:

b (r;1)
ot

=div(c(6) Vb (1)), ®)

for the continuous 2D rectangular scene frame R > r = (x, y).
In (5), 0b(r;t)/0t represents the evolutionary reconstructed

SSP estimate b(r; t), which provides edge preservation in the
scene regions with high gradient contrast while performing
smoothed windowing over the homogeneous image zones
corrupted by speckle noise. Also, c(r;t) = g(||VE(r; t)|) rep-
resents the diffusion coefficient, Vb(r; ) denotes the gradient
of the image, and g(-) is called edge stopping function, which
is selected as a decreasing function of the gradient of the
reconstructed image.

Now, the discrete version of the anisotropic diffusion
equation of (5) is represented as

by = b}£%+—Zg( By) VB(rp)» (©6)

1\ pen

where |17 is equal to the number of pixels in the neighborhood
that is normally at the boundaries in the north, south, east,

and west directions. VE(,, ) is the discrete gradient in one
of four diffusion directions. The diffusion coefficient is next
defined as follows:

_ ]
b,k)= ———,
9(bk) 1+ (VB p/K) @

where parameter K is called the scale parameter, which
should be selected to be smaller than the gradient at edges
and larger than the gradient at noise. Furthermore, because of
inherent noise, the calculated edge strength based on gradient
is not a true reflection of the edge strength. Therefore, the
ambiguity of choosing a suitable value for parameter K and
thus the uncertainty in the diffusion coefficient justify the use
of fuzzy set theory in such situations. The discrete version of
the anisotropic diffusion equation of (6) is represented as

b[1+1] b[I]

#1| 2 o Dy (B) + 2 &+ Dy (B)
1 ~ 1 -
+ = 6 Dg (B) + = - Dy (B)

y y
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in which ¢y through ¢y represents the diffusion coefficients,
d,, d,, and d; are the distance between the pixels, and Dy
through Dy, indicate the nearest-neighbor differences for
the corresponding direction.

In this study, we propose to change each nearest-neighbor
differences Vl;(r’ p (D in the discrete representation) that
define the edge factor (algorithmically the same as the
Laplacian filter in each direction) in the traditional Perona-
Malik algorithm of (6) with a Fuzzy Logic System (FLS)
approach that calculates the edges in order to avoid the noise
of the image [20].

Fuzzy logic system (FLS) is a rule-based theory in which
an input is first fuzzified (converted from a crisp number to a
fuzzy set) and subsequently processed by an inference engine
that retrieves knowledge in the form of fuzzy rules contained
in arule-base. The fuzzy sets computed by the fuzzy inference
as the output of each rule are then composed and defuzzified
(converted from a fuzzy set to a crisp number). The following
fuzzy rules are defined in Table L

The proposed fuzzy anisotropic diffusion approach is next
described in detail as follows:

b[1+1] b[ll
1 ~ 1 -
4] 5o Yy (B) + 5 - X (B)
1 -~ 1 ~
bt Y (B) + Yy ()
y y
1 ~ 1 -
+¥’CNE'YNE(Z’) d2 CONW YNW(b)

[i]
+% 'CSE'YSE(E)"' % 'Csw'st(B) >

)

in which ¢y through cqy represent the diffusion coefficients
computed using (7), d,, d,,, and d; are the distance between
the pixels, and Yy through Y, represent the edge in each
direction as a result of the fuzzy logic system.

Now, we are ready to describe the GPU-based imple-
mentation of the intelligent parallel processing toolbox for
remotely sensed imagery.

3. GPU-Based Parallel Toolbox
Implementation

In order to speed up the processing design flow methodology
described in the previous section, a parallel framework is
used. This parallel tool was developed using the graphic
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Figur e 2: Graphic user interface.

Table 1: Fuzzy rules to compute Fy through Fg,, for Black member-
ship function.

Direction Fuzzy rule

North IF Dy is Zero AND Dy is Zero AND Dy is
Zero THEN Fy is Black ELSE Fy is White

South IF Dy, is Zero AND Dy is Zero AND Dy is
Zero THEN F; is Black ELSE F is White

Fast IF Dy is Zero AND Dy is Zero AND Dy is
Zero THEN F;, is Black ELSE Fy is White

West IF Dy is Zero AND D is Zero AND Dy, is
Zero THEN F,, is Black ELSE F,, is White
IF Dy is Zero AND Dy, is Zero AND Dy, is

North east Zero THEN Fy is Black ELSE Fyg is White
IF Dy is Zero AND Dy, is Zero AND D is

North west Zero THEN Fyy is Black ELSE Fy is White

South east IF Dy is Zero AND Dy is Zero AND Dy is Zero
THEN F; is Black ELSE Fg; is White

South west IF D,y is Zero AND Dy, is Zero AND Dy is

Zero THEN Fy,, is Black ELSE F,, is White

user interface (GUI) of MATLAB and the algorithmic
implementation (i.e., image formation/reconstruction/post-
processing) with GPU. The proposed approach also allows
other functionalities, such as gray-scale image representation,
random noising effects, image enhancement/reconstruction,
fuzzy edge detection representation, and loading/storing of
results for different radar/SAR systems. The developed par-
allel tool is shown in Figure 2. From the analysis of Figure 2,
it is easy to observe that the toolbox presents the results for
each corresponding processing stage.

In addition, the algorithmic implementation of the pro-
cessing chain framework uses several processors working
with independent data partitions [2]. However, before get-
ting the details of the implementation let us remark that
the implementation uses CUDA-enabled GPU, which are
separate devices that are installed in a host computer, run
asynchronously to the host processor, and have their own
physical memory.

The basic unit of work on the GPU is a thread. Every
thread acts as if it has its own processor with separate
registers and identity that happens to run in a shared memory
environment [2]. CUDA programs utilize kernels, which are

subroutines callable from the host that work on the CUDA
device. The extern function is called from the host, and it
calls the different kernels. A kernel utilizes many threads to
perform the work defined in the kernel source code. The
kernel should make partitions of the data to be processed by
each thread, taking care of not overlapping thread processing
on any memory section in order to avoid undesired results.

The way the GPU is divided is in Streaming Multipro-
cessors (SMs), and each SM contains cores that execute and
identical instruction set, or sleep; up to 32 threads may be
scheduled at a time, called a warp, but maximum 24 warps
are active in one SM. The threads in the same multiprocessor
can share “Shared Memory” by synchronizing their execution
for coordinating accesse to memory. The SM divides registers
among threads and threads access the register memory
as local; they have access to local cache memories in the
multiprocessor, while the multiprocessors have access to the
global GPU (device) memory.

The GPU blocks represent the number of parallel blocks
that we will launch in our grid. Hardware is free to assign
blocks to any processor at any time, and at execution time
they tell GPU how many threads to launch per block [21].
Figure 3 shows how block and thread configuration would
look in a small, 6 block, 100-thread kernel.

One of the first decisions to make before developing the
GPU implementation is about the memory mapping of data,
that is, how the GPU memory will be used for an improved
performance. To do that, we assume that image fits into GPU
memory, and in future works this problem will be addressed
for larger images. However, instead of just copying and using
the values for each pixel, we use textures. Textures are bound
to global memory and can provide both cache and some
limited, 9-bit processing capabilities [2]. The global memory
is allocated as CUDA arrays; when the arrays are bound,
textures are cache optimized for spatial locality and allow
interpolation, wrapping, and clamping.

On the other hand, we use fuzzy rules which are common
to each thread and do not change over time, and for them
we use another kind of memory known as constant memory.
Constant memory is used for data that will not change over
the course of a kernel execution. In some situations, using
constant memory rather than global memory will reduce the
required memory bandwidth [21].
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Figur e 3: A 2D hierarchy of blocks and threads in an SM.

Considering the aggregation of parallel techniques with
GPU computing, we next describe the efficient GPU-based
implementation of each processing stage of the proposed
parallel tool: GPU implementation of the (i) image formation;
(ii) image enhancement/reconstruction; (iii) image post-
processing.

Now, we describe the specific functions and CUDA
kernels used for efficient implementation of image formation/
reconstruction/post-processing on the GPU.

First, a kernel is implemented to compute the image
formation processing applying the conventional Matched
Space Filter (MSF) algorithm [22]. Due to the fact that this
filter can be expressed as a Toeplitz matrix, the processing
stage is highly improved due to its potential for parallelization
in a massively parallel scheme. The image-formation kernel is
launched with many threads as pixels contain the RS image,
where each thread executes the corresponding operation of
the MSF method. Additionally, the time processing of the
algorithm is also reduced with the efficient management of
data transfers from the CPU and GPU. The device overlap
function was activated with the capacity to simultaneously
execute a CUDA kernel while performing a copy between
CPU to GPU memory [2, 21]. Multiple CUDA streams
are created to perform this overlap of computation in data
transfer.

Second, the computational procedures for the imple-
mentation of the RSF/RASF reconstructive algorithms are
described. We start with the memory configuration man-
agement using the “mmap” library of GNU C. With this
library, the image can be accessed from the CPU with a simple
pointer without the necessity to read each pixel value. Next,
the matrix-matrix multiplication operations are computed. A
specific CUDA kernel is implemented using one grid of n xm
blocks, in which each block processes the corresponding sub-
matrix operation in a parallel scheme. The results are next
loaded in the shared memory of the GPU. Note that several
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additional operations must be implemented in this stage. In
this study, we propose to use the reduction algorithm [23].

Next, the extern function Perona-Malik is called from the
host, it binds the texture to array, calls the “fuzzy” kernel for
image enhancement, and normalizes the resulting array using
the optimized NVIDIA Performance Primitives [24]. The
Perona fuzzy kernel is computed for the image enhancement
post-processing. In this stage, the first operation is to read
the texture at subpixel precision and take differences in a
neighbourhood window of 3x3 pixels; this corresponds to Dy
through Dgyy values for the fuzzy rules of Table 1 The fuzzy
input vectors are used as membership function, and that this
means the Zero, Black, and White values are used in the fuzzy
rules as depicted in Table 1. We have 2 membership functions
defined for each of the 8 possible directions (neighbours) of
a pixel, resulting in 16 fuzzy values.

After that, it is applied the implication method (min func-
tion), afterwards, an aggregation method (max function), and
finally defuzze the values applying the anisotropic diffusion.

The implication method is computed Impy as the min-
imum between the resulting Fy and the fuzzy input value
for White or Black, depending on the membership function
used, where X is equal to N through SW, and Y is equal to
White and Black. The aggregation method takes the maxi-
mum between Impyyy;. and Impgy, 4. Finally the anisotropic
diffusion was applied using (9).

The resulting pixel values are independent from others,
and hence the fuzzy calculations are suitable for a GPU
implementation. Each thread is responsible for computing
the fuzzy anisotropic diffusion of a part of the image. This
image part is selected as shown in Figure 3; that is, it is done
considering the blocK’s size, block’s index, and thread’s index.

The resulting pixel values are float numbers; hence,
in order to ease the visualization, they are normalized to
unsigned char values for each channel. This task is performed
before displaying the resulting image but is optional in
case of post-processing. We take advantage of optimized
functions provided by the Nvidia Performance Primitives
[24], using the nppsMinMax_32f to get the minimum and
maximum float value resulting from the fuzzy kernel and
nppsNormalize_32f to normalize the image with the resulting
minimum value at 0 and maximum at 255.

4. Results and Performance Analysis

In this section, we carry out the experimental validation
of the proposed parallel toolbox system. Also, the time
performance analysis is performed in order to demonstrate
the time processing improvement achieved with the GPU-
based implementation. The experimental case studies are
next described for a high-resolution RS image acquired from
an SAR system.

4.1. Experimental Validation of the Intelligent Parallel Pro-
cessing. In these experiments, the validation was performed
with large scales (1IK-by- 1K pixel format) RS images borrowed
from real-world high-resolution terrain SAR imagery (lower
Manbhattan region, NY, USA and the Pentagon region near
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Table 2: IOSNR of the aggregated RASF-PM and RASF-fuzzy
anisotropic diffusion algorithms evaluated for different SNRs.

SNR (dB) RASF-PM method (dB) = RASF-fuzzy method (dB)
5 713 8.15
10 7.92 10.37
15 9.75 11.2
20 10.86 13.65

Washington, DC, USA [25]). In the image formation stage, we
considered the conventional side-looking synthetic aperture
radar (SAR) with the fractionally synthesized aperture as an
RS imaging system [11 12]. The regular SFO F of such SAR
is factored along two axes in the image plane using the MSF
method: the azimuth or cross-range coordinate (horizontal
axis, x) and the slant range (vertical axis, y), respectively. We
considered the conventional triangular SAR range ambiguity
function (AF) [1] and Gaussian approximation [22] of the
SAR azimuth AE Also, the chi-squared additive noise of
20 dB signal-to-noise ratio (SNR) was incorporated to test the
performances of the particular RS processing chain.

In the reconstruction and post-processing stage, we
conduct the evaluation of the GPU-based implementation
of the well-known reconstructive and enhancement post-
processing algorithms. The validation has been realized
between the original scene frame, the degraded RS image,
the reconstructive RASF algorithm, the Perona-Malik (PM)
technique, and the fuzzy anisotropic-diftfusion technique.

In analogy to the image reconstruction for quantitative
evaluation of the RS reconstruction performances, the quality
metric defined as an improvement in the output signal-to-
noise ratio (JOSNR) is employed. This metric is defined as fol-

. _ L gMSE_ 132 5L 3@ _ 2.
lows: IOSNR = 10log,,(},2, (5™ = b) / X, (5" = b) );
q = 1,2, where Lisrelated to the size of the RS image, b, repre-
sents the value of the /th element (pixel) of the original image,
blMSF represents the value of the Ith element (pixel) of the

degraded image formed applying the MSF technique, and l;l(q)
represents a value of the /th pixel of the image reconstructed
with two considered reconstructive-related methods; g =
1,2, where g = 1 corresponds to the RASF-PM algorithm
and ¢ = 2 corresponds to the RASF-fuzzy anisotropic
diffusion algorithm, respectively. The quantitative measures
of the image enhancement/reconstruction performance gains
achieved with the particular employed RASF-PM and RASF-
Fuzzy anisotropic diffusion techniques, are evaluated via the
IOSNR metric, as reported in Table 2.

According to this quality metric, the higher the IOSNR
(the average over 100 realizations), the better the improve-
ment of the image reconstruction/post-processing with the
particular employed algorithm.

Next, the qualitative results are presented in Figures
4 and 5. Figures 4(a) and 5(a) show the original test
scene image. Figures 4(b) and 5(b) present the noised low-
resolution (degraded) scene image formed with the conven-
tional MSF algorithm. Figures 4(c) and 5(c) present the scene
image reconstructed with the RASF algorithm. Figures 4(d)
and 5(d) present the scene image enhancement employing

7
Table 3: Comparative feature analysis of the employed GPU.

GPU features GTS 450 Tesla C2075
Pee.lk single precision floating 601Gflops 1080 Gflops
point performance
Memory bandwidth (ECC off) 57.7 GB/sec 148 GB/sec
Memory size (GDDR5) 1GB 6 GB
CUDA compute capability 2.1 2.0
CUDA cores 192 448

the RASF-PM post-processing algorithm, Figures 4(e) and
5(e) present the result of the fuzzy edge detection, and Figures
4(f) and 5(f) present the results of the image enhancement
using the implemented RASF-fuzzy anisotropic diffusion
post-processing algorithm.

From the analysis of the qualitative and quantitative
simulation results reported in Figures 4 and 5and Table 2, one
may deduce that the aggregation of the reconstructive model-
based RASF method and the model-free fuzzy anisotropic
diffusion method overperforms the classical PM anisotropic
diffusion method in the experimental validation scenario of
the intelligent parallel processing toolbox.

4.2. Time Performance Analysis. Next, we compared the
required processing time for two different implementation
schemes as reported in Tables 3 and 4. In the first case, the
reference image formation/reconstruction/post-processing
procedures for the intelligent parallel processing of remotely
sensed imagery were implemented in the conventional C lan-
guage in a Dell PowerEdge Server with an Intel Xeon E5603
Quad Core processor at 1.6 GHz and 24 GB of RAM. In the
second case, the same algorithms were implemented using
the proposed parallel toolbox approach which aggregates the
graphic user interface of MATLAB with the parallel multi-
processor scheme based on GPU. In Table 3, a comparative
feature analysis of the employed GPU is presented.

Next, considering the implementation on a Dell Pow-
erEdge Server, which has a Nvidia Tesla C2075 GPU, we have
achieved kernel-processing times up to 30 ms, which means
10+ times faster than desktop GPU processing with a Nvidia
Gforce GTS 450.

The overall process for each stage of aggregation of the
reconstructive model-based RASF method and the model-
free fuzzy anisotropic diffusion method is 98 ms for Tesla and
897 ms for GTS, and considering only the fuzzy anisotropic
kernel the times are 39 ms for Tesla and 357 ms for GTS.
The speedup of each stage is over 200 times in comparison
to a Matlab implementation, and 10 times a Desktop GPU
implementation, as presented in the comparative processing
time analysis of Table 4. Note that Matlab implementation
does not need any transfers or GPU management; hence, it
is only presented the overall processing time.

5. Conclusions

In this paper, a parallel tool for large-scale remote sensing
images was presented. This tool allows the image formation
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Figur e 4: Experimental results: (SNR = 20 dB): (a) original test scene of lower Manhattan; (b) degraded scene image formed applying the MSF
method; (c) image reconstructed applying the regularized RASF algorithm; (d) image enhancement applying the RASF-PM post-processing
algorithm; (e) image applying the fuzzy edge detection; (f) image enhancement using the RASF-fuzzy post-processing algorithm.

(@) () (© (d)

(e) )

Figur e 5: Experimental results: (SNR = 20 dB): (a) original test scene which corresponds to the Pentagon region; (b) degraded scene image
formed applying the MSF method; (c) image reconstructed applying the regularized RASF algorithm; (d) image enhancement applying
the RASF-PM post-processing algorithm; (e) image applying the fuzzy edge detection; (f) image enhancement using the RASF-fuzzy post-
processing algorithm.
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Tabl e 4: Comparative analysis of processing times for model-free fuzzy anisotropic diffusion method.

Image size MATLAB GTS 450 (Desktop GPU) Tesla C2075 (HPC server)
Total Total Kernel Total Kernel

1Kx IK 9626 ms 897 ms 357 ms 98 ms 39ms

3Kx3K 79670 ms 4814 ms 1916 ms 503 ms 200 ms

and the reconstruction of images using two well-known tech-
niques: the robust spatial filter (RSF) and the robust adaptive
spatial filter (RASF). It also applies a post-processing stage
based on the Perona-Malik algorithm jointly with a Fuzzy
Logic System (FLS) named in this paper as fuzzy anisotropic
diffusion technique. This toolbox was implemented using a
Matlab graphic user interface (GUI) and the mathematical
operations were computed using graphics processor units
(GPU). Under this paradigm, it was possible to save signif-
icant processing time due to the adaptation of the algorithms
for its parallel implementation. For the presented case of
studies, it was shown that the processing time in comparison
with a PC based implementation was reduced +200 times.
Thus, this approach represents a powerful parallel tool for
processing huge amount of large scale RS images.
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