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Channel simulators are powerful tools that permit performance tests of the individual parts of a wireless communication system.
Thi is relevant when new communication algorithms are tested, because it allows us to determine if they fulfil the communications
standard requirements. One of these tests consists of evaluating the system performance when a communication channel is
considered. In this sense, it is possible to model the channel as an FIR fi ter with time-varying random coeffici ts. If the number
of coeffici ts is increased, then a better approach to real scenarios can be achieved; however, in that case, the computational
complexity is increased. In order to address this issue, a design methodology for computing the time-varying coeffici ts of the
fading channel simulators using consumer-designed graphic processing units (GPUs) is proposed. With the use of GPUs and the
proposed methodology, it is possible for nonspecialized users in parallel computing to accelerate their simulation developments
when compared to conventional softw re. Implementation results show that the proposed approach allows the easy generation
of communication channels while reducing the processing time. Finally, GPU-based implementation takes precedence when
compared with the CPU-based implementation, due to the scattered nature of the channel.

1. Introduction

Currently, the high demand for integrated services (voice,
data, and video) means that new data transmission schemes
have to be developed for dealing with high transmission data
rates and at the same time for offering high levels of quality of
service.The fourth generation (4G) of mobile communication
systems is still under development; its main goal is to provide
a digital communication network (land, mobile, and satellite)
with peak data rates of 100 Mbps for high mobility devices and
high data rates of 1Gbps for users or devices in low mobility
environments or stationary conditions. The main technolo-
gies used in 4G include techniques based on multiple-input
and multiple-output (MIMO) antennas, turbo decoding,
adaptive modulation, coding schemes and error correction,
and orthogonal FDMA (orthogonal FDMA, OFDM) [1, 2].
Current versions of standards that incorporate 4G are LTE-A
(long term evolution-advanced) and IEEE 802.16 m WiMAX

(Worldwide Interoperability for Microwave Access) mobile.
Therefore, the new issues imposed by the standards require
new processing algorithms to be tested on high mobility envi-
ronments affected by Doppler shift (time-selective channels)
and multipath propagation (frequency-selective channels).
The temporal channel variability occurs when the character-
istics of the transmission medium change over time or when
there is a relative motion between the receiver and transmit-
ter, as in communication systems such as LTE and WiMAX.
Th frequency selectivity appears when multiple copies of
the transmitted signal arrive at the receiver due to physical
mechanisms such as multipath propagation.

Moreover, knowing the behavior or performance of a
mobile communication system under real conditions (in situ
test) can be very expensive, owing to the transfer of the com-
munications system and test equipment to the place under
study, among other issues. Additionally, the system behavior
can not be tested under the same propagation conditions due
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to the nature of the communication channel. Faced with this
problem, an economical alternative is to use mathematical
models, which represent the radio channels under consid-
eration. In this sense, we can defin a channel simulator as
a software tool that permits reproduction of the behavior
or the propagation conditions of a mobile communications
channel under controlled or laboratory conditions.

On the other hand, GPU-accelerated computing is the use
of a graphics processing unit (GPU) together with a CPU in
order to accelerate scientific engineering, and business appli-
cations [3]. Recently, several works related to the wireless
communication area, which uses GPU devices, have been
published [4–7]. Those works follow an implementation
strategy in order to handle the channel complexity using mul-
tiple cores. For example, in [4] a wireless channel simulator is
implemented. In that work, the potential of GPU-based pro-
cessing is studied in order to improve the runtime perform-
ance of computationally intensive accurate wireless network
simulation. In [5], the use of general purpose GPUs is inves-
tigated in order to provide the computational capabilities
required for performing the radio frequency path loss com-
putation. A discussion of the acceleration of wireless channel
simulation using GPUs is provided in [6]. In addition, in
[7], an implementation of parallel lattice reduction-aided 2 ×
2 MIMO detector using GPUs for the WiMAX standard is
presented.

Although several works related to the use of GPUs in
communication systems exist, there are currently no works
that describe in detail the implementation of a fading channel
simulator based on GPUs. In this paper, the methodology
for implementing a fading channel simulator (time and
frequency selective) via GPU computing is presented.

Th proposed methodology considers the use of common
GPU software libraries that permit nonspecialized users
in GPU programming to easily implement the proposed
simulator. On the other hand, the generation of the Rayleigh
fading variates is achieved using the filtering method [8–10].
In this case, the fi tering method is carried out in time domain
by using a finite impulse response (FIR) fi ter for coloring
Gaussian noise samples. Furthermore, it is well known that if
the filter order is increased, then the accuracy of the channel
statistics can be improved, though at the cost of increasing
the computational complexity. Therefore, in this work, we
take advantage of GPUs for handling such computational
complexity (multiplication and addition operations) in order
to implement an accurate communication channel for SISO
systems. Moreover, this methodology paves the way for
implementing MIMO channel simulators in the future.

The rest of this paper is organized as follows: In the
second section, the background of the wireless communi-
cation system is stated, specific lly as regards the channel
communication model. In Section 3, how to simulate the
communication channel is explained. Next, in Section 4,
the GPU implementation of the fading channel simulator is
detailed. Section 5 is devoted to presenting the implementa-
tion results when a WiMAX scenario is considered. Finally,
the conclusions are presented in Section 6.

2. Communication System

Consider a single-input and single-output (SISO) communi-
cation system where the transmission of in-phase 𝑥

𝑖
(𝑡) and

quadrature 𝑥
𝑞
(𝑡) signals modulated by orthogonal carriers

𝜙
𝑖
(𝑡) and 𝜙

𝑞
(𝑡), respectively, are assumed, which are mixed

for obtaining 𝑥(𝑡). This signal 𝑥(𝑡) is propagated through the
communication channel 𝐻(𝑡, 𝜏), which is considered to be a
causal time-varying linear system. The signal filtered by the
channel reaches the receiver where a noisy version 𝑦(𝑡) is
detected. It can be expressed mathematically as follows:

𝑦 (𝑡) = ∫

∞

−∞

𝑥 (𝑡 − 𝜏)𝐻 (𝑡, 𝜏) 𝑑𝜏 + 𝑢 (𝑡) , (1)

where 𝑥(𝑡) = 𝑥
𝑖
(𝑡)𝜙
𝑖
(𝑡) + 𝑥

𝑞
(𝑡)𝜙
𝑞
(𝑡), and 𝑡 is a time variable.

Th impulse response 𝐻(𝑡, 𝜏) states the response of the
channel in the instant 𝑡 when a stimulus is applied in 𝑡 − 𝜏,
which refle ts the time variability of the channel impulse
response. Likewise, 𝑢(𝑡) is the aggregated stochastic noise.
Thi received signal 𝑦(𝑡) is demodulated in order to obtain
the in-phase and quadrature signals 𝑦

𝑖
(𝑡) and 𝑦

𝑞
(𝑡).

For sake of simplicity, if 𝜙
𝑖
(𝑡) = cos(2𝜋𝑓

𝑐
𝑡+𝜃) and 𝜙

𝑞
(𝑡) =

sin(2𝜋𝑓
𝑐
𝑡 + 𝜃), where 𝑓

𝑐
is any carrier frequency and 𝜃 is

any phase, the system becomes the well known single carrier
communication system. It is important to emphasize that an
OFDM system implemented with IFFT/FFT produces a base-
band signal that is modulated as in a single carrier system.

If we consider that both signals 𝑥
𝑖
(𝑡) and 𝑥

𝑞
(𝑡) are band

limited to a maximum frequency of 𝑓max and 𝑓
𝑐
≫ 𝑓max (this

condition is always accomplished in real communication
systems) it is easy to demonstrate [11, 12] with the aid of
the Hilbert transform the existence of base-band equivalent
signals 𝑦(𝑡), 𝑥(𝑡), 𝑢̃(𝑡), and 𝐻̃(𝑡, 𝜏) for 𝑦(𝑡), 𝑥(𝑡), 𝑛(𝑡), and
𝐻(𝑡, 𝜏), respectively. In general, these equivalent base-band
signals are complex, where the real part corresponds to the
in-phase component and the imaginary to the quadrature
component; thus,𝑥(𝑡) = 𝑥

𝑖
(𝑡)+𝑗𝑥

𝑞
(𝑡) and𝑦(𝑡) = 𝑦

𝑖
(𝑡)+𝑗𝑦

𝑞
(𝑡)

for 𝑗 = √−1. The relations between the original pass-band
signals and their baseband equivalents are as follows [12]:

𝑦 (𝑡) = Re (𝑦 (𝑡) 𝑒𝑗2𝜋𝑓𝑐𝑡) ,

𝑥 (𝑡) = Re (𝑥 (𝑡) 𝑒𝑗2𝜋𝑓𝑐𝑡) ,

𝑢 (𝑡) = Re (𝑢̃ (𝑡) 𝑒𝑗2𝜋𝑓𝑐𝑡) ,

𝐻 (𝑡, 𝜏) = Re(
1

2

𝐻̃ (𝑡, 𝜏) 𝑒
𝑗2𝜋𝑓
𝑐
𝑡
) ,

(2)

where Re(⋅) is the real part of the complex number in
parentheses. Considering (2), the base-band equivalent of (1)
is

𝑦 (𝑡) = ∫

∞

−∞

𝑥 (𝑡 − 𝜏) 𝐻̃ (𝑡, 𝜏) 𝑑𝜏 + 𝑢̃ (𝑡) , (3)

which can be interpreted as a collection of multiple paths
(scatters), where the transmitted signal 𝑥(𝑡) is propagated.
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The fact that these paths have different lengths and pass
through different conditions of propagation causes the
received signal from a specifi path to be a delayed, attenu-
ated, and phase-shifted version of the 𝑥(𝑡). In this sense, for a
specifi time 𝑡

1
and a specific delay 𝜏

1
, the channel coefficient

𝐻̃(𝑡
1
, 𝜏
1
) will be a complex variable, where the magnitude

represents the attenuation factor and the phase shift factor.
On the other hand, due to the constant changes in the environ-
ment and the possible relative movement between transmitter
and receptor, these factors are time dependent. According to
[12], 𝐻̃(𝑡, 𝜏) can be modeled as a complex stochastic process
composed of the sum of a deterministic part (the ensemble
average of 𝐻̃(𝑡, 𝜏)) and a random part (zero mean random
process). From this point, we will only consider the random
part (an assumption generally accepted when a channel
simulator is developed). Th autocorrelation function of this
random process is equal to

𝑅
𝐻̃
(𝑡
1
, 𝑡
2
; 𝜏
1
, 𝜏
2
) = 𝐸 (𝐻̃ (𝑡

1
, 𝜏
1
) 𝐻̃
∗
(𝑡
2
, 𝜏
2
)) , (4)

where 𝐸(⋅) is the expectation operator and (⋅)
∗ represents

the complex conjugate. Thi channel model is difficult to
implement; nevertheless, some assumptions can be asserted
which simplify the model. Th fi st is the absence of corre-
lation between the diff rent scatters, and the second is that
each scatter is a wide-sense stationary process, which together
comprise the well known wide-sense stationary uncorrelated
scattering (WSSUS) model. The efore, (4) transforms into

𝑅
𝐻̃
(𝑡
1
, 𝑡
2
; 𝜏
1
, 𝜏
2
) = 𝑅
𝐻̃
(𝑡
1
, 𝑡
1
− Δ𝑡; 𝜏

1
, 𝜏
2
) 𝛿 (𝜏
1
− 𝜏
2
)

= 𝑃
𝐻̃
(Δ𝑡; 𝜉) ,

(5)

where 𝜉 = 𝜏
1
= 𝜏
2
, Δ𝑡 = 𝑡

1
− 𝑡
2
, and 𝑃

𝐻̃
(Δ𝑡, 𝜉) is the

autocorrelation function with respect to the time difference
variableΔ𝑡 for the scatter located in the delay variable 𝜉. From
(5), it is possible to calculate the scattering function, which is
defined as the Fourier transform of the correlation function
with respect to the time diff rence variable Δ𝑡, as follows:

𝑆 (𝑓; 𝜉) = F {𝑃
𝐻̃
(Δ𝑡; 𝜉)} , (6)

where F{⋅} is the Fourier transform operator. Thi scattering
function 𝑆(𝑓; 𝜉) indicates how the Doppler spectrum is for a
given delay value in the variable 𝜉.

In many communication standards, a discrete number of
scatters are considered instead of a continuous number, as
suggested in previous equations. If this assumption is consid-
ered, then

𝐻̃ (𝑡, 𝜏) =

𝐾−1

∑

𝑘=0

𝐴
𝑘 (
𝑡) 𝛿 (𝜏 − 𝜏𝑘

) , (7)

where 𝑘 is an index variable that enumerates the𝐾−1 discrete
scatters and𝐴

𝑘
(𝑡) is a complex variable that encloses the gain

and phase shift factor of such scatter. If a WSSUS channel is
considered, the correlation function of (7) is

𝑃
𝐻̃
(Δ𝑡; 𝑘) = 𝐸 (𝐴𝑘 (

𝑡) 𝐴
∗

𝑘
(𝑡 − Δ𝑡)) (8)

with scattering function

𝑆 (𝑓; 𝑘) = F {𝑃
𝐻̃
(Δ𝑡; 𝑘)} . (9)

3. Channel Simulation

In order to perform a computational simulation of the
communication channel, it is necessary to deal with the
discrete version of the baseband equivalent channel presented
in (7). This discrete channel results in band-limiting and
sampling (7) in time and time-delay domains at a rate of
𝑓
𝑠
≥ 2𝑓max. Thus, it is defin d as

ℎ [𝑛,𝑚] = ℎ(𝑡, 𝜏)|𝑡=𝑛𝑇
𝑠
,𝜏=𝑚𝑇

𝑠

, (10)

where 𝑇
𝑠
= 1/𝑓

𝑠
, ℎ(𝑡, 𝜏) = 𝐻̃(𝑡, 𝜏) ⊗ 𝐵(𝜏), the symbol ⊗

represents the convolution operator, and 𝐵(𝜏) is a function
for band-limiting the channel to 𝑓max, which, for practical
purposes, could be a time windowed cardinal sine function.
Substituting (7) into (10) results in

ℎ [𝑛,𝑚] =

𝐾−1

∑

𝑘=0

𝐴
𝑘
(𝑛𝑇
𝑠
) 𝐵 (𝑚𝑇

𝑠
− 𝜏
𝑘
)

=

𝐾−1

∑

𝑘=0

𝐴
𝑘 [
𝑛] 𝐵 (𝑚𝑇𝑠

− 𝜏
𝑘
) ,

(11)

where ℎ[𝑛,𝑚] corresponds to the coeffici ts of the FIR filter
for simulating the communication channel, 𝑛 enumerates the
samples in the time domain, and 0 ≤ 𝑚 ≤ 𝑀 − 1 enumerates
the taps of the fi ter. Likewise,𝑀 can be calculated as ⌈(𝜏max+
𝑡
𝐵
)/𝑇
𝑠
⌉, where 𝜏max is the maximum delay of the paths in

the channel 𝐻̃(𝑡, 𝜏), and 2𝑡
𝐵

is the length of the filter 𝐵(𝜏).
Thi filter could be anticausal; nevertheless, it is possible to
introduce a delay in order to convert this filter into a causal
filter and therefore physically feasible.

In order to implement (11), it is necessary to generate 𝐾
uncorrelated discrete Gaussian stochastic complex processes
at rate𝑓

𝑠
. In the state of the art many algorithms for obtaining

these stochastic processes are stated, as mentioned in [13–
16] and references therein. Such processes must be filtered
(colored) in order to accomplish the desired scattering func-
tion. It is important to note that these filters only affect the
frequency components below a maximum Doppler frequency
𝑓max

𝐷

; therefore, it is possible to generate the samples at a rate
of at least 𝑓

𝑙𝑠
≥ 2𝑓max

𝐷

, where typically 𝑓
𝑙𝑠
≪ 𝑓
𝑠
, and then to

use any upsampling technique for accomplishing the 𝑓
𝑠

rate.
Th impulse response of the filter for coloring the 𝑘th

process is the discrete version (at rate 𝑓
𝑙𝑠

) of the following
expression:

𝐺
𝑘 (
𝑡) = √F−1 {𝑆 (𝑓; 𝑘)}. (12)

Finally, an interpolation technique such as splines, polyno-
mial, or basis expansion is used for obtaining the samples at𝑓

𝑠

rate. The entire process is presented in Figure 1and summa-
rized in Algorithm 1.

4. GPU Implementation

Th emergence of GPUs has allowed complex algorithms to
be executed almost in real time. GPU is conceptualized as
a set of streaming multiproccesors (SM), where each SM is



4 Mathematical Problems in Engineering

Require: Scattering function
Require: Define the gain 𝜎2

𝑘
that correspond to the variance of the process 𝐴

𝑘
[𝑛] for all the 𝐾 paths

(1)for all 𝑘 such that 0 ≤ 𝑘 ≤ 𝐾 − 1 do
(2) Generate the zero mean unitary variance complex Gaussian stochastic process at rate 𝑓

𝑙𝑠
samples per second

(3) Multiply the stochastic process by √𝑃
𝑑
(𝑘) for ensuring the gains of the paths

(4) Filter the process with discrete 𝐺
𝑘
(𝑡)

(5) Interpolate the process for obtaining samples at rate 𝑓
𝑠

(6) end for
(7) for all 𝑛 do
(8) Obtain 𝑀 fi ter’s coeffici ts

ℎ[𝑛,𝑚] = ∑
𝐾−1

𝑘=0
𝐴
𝑘
(𝑛𝑇
𝑠
)𝐵(𝑚𝑇

𝑠
− 𝜏
𝑘
)

(9) end for

Al gori t hm 1: Channel generation procedure.
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Figur e 1:Structure of the fading channel simulator.

characterized by a single instruction multiple data (SIMD)
architecture. Therefore, in each clock cycle, each processor of
the multiprocessor executes the same instruction, operating
on multiple data streams; that is, each of these processors has
the possibility of accessing a shared memory (common to
all processors belonging to the same SM) and a local cache
memory. In addition, all the processors have access to the
global GPU (device) memory. Figure 2 illustrates the GPU
hardware architecture.

Our strategy for implementing the fading channel sim-
ulator is aimed at improving the overall performance by
chaining software functions (called kernels) representing
each communication step. In order to implement the parallel
fading simulator as illustrated in Figure 3, we distinguish five
stages in the GPU design methodology as follows.

4.1. Gaussian Random Number Generator. In this stage, the
CUDA Random Number Generation (cuRand) library [17]
is employed in order to obtain Gaussian random numbers
(GRN) by means of effici t generation of high-quality
pseudorandom numbers. Particularly, curand init func-
tion is launched for creating a random number generator
in a massively parallel scheme. There are seven types of

random number generators in cuRand; in this study, we have
selected the XORWOW algorithm, which is a member of the
Xor shift family of pseudorandom number generators, with
customized parameters for operating on GPUs.

Th curand normal2 function generates two normally
distributed pseudorandom numbers in each call. Because the
underlying algorithm is based on the Box-Muller transform,
it is suitable for generating random complex numbers; that is,
each call generates real and imaginary parts at the same time.

There is a CUDA kernel for computing a set of 𝐾

independent GRN vectors. Each vector corresponds to a path,
which is computed in chunks by the GPU multiprocessors and
then stored on device global memory. The implementation
of the GNR generator is presented in the Algorithm 2,
where the function setup kernel initializes the threads
of the same block with a different sequence number
but the same seed and off et (zero off et). Furthermore,
generate normal kernel computes several pseudoran-
dom values with Gaussian distribution through the calling of
curand normal2.

4.2. Parallel Doppler FIR-Filter. Th Doppler filter uses
the resulting coeffici ts obtained by sampling (12) and
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2
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Figure 2: GPU data distribution for 𝑃 multiprocessors with 𝑄 processors each.
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Figur e 3: Proposed GPU design flow.

global void setup kernel(curandState ∗state)

{ int id = threadIdx.x + blockIdx.x ∗6;

curand init(1234∗blockIdx.x, id, 0, &state[id]);

}

global void generate normal kernel(curandState ∗state, int n, float ∗result)

{ int id = threadIdx.x + blockIdx.x ∗6;

float2 x;

curandState localState = state[id];

for(int i=0; i<n; i++)

{ /∗ Generate pseudorandom normals ∗/

x=curand normal2(&localState);

result[id]= x.x;

}

/∗ Copy state back to global memory ∗/

state[id] = localState;

}

Algor ithm 2: Pseudorandom noise generation code.

the random numbers generated in the previous subsection.
Since the filter coefficients are fixed for all channel realiza-
tions and paths, they are stored in the constant memory of
GPU. Thi memory is devoted to storing and broadcasting
read-only data to all threads on the GPU. In addition, the
results of GRN are stored in shared memory, since many

threads must access them simultaneously. The filtering is
conceptualized as a convolution, so a kernel that performs the
convolution in parallel is used.

The e is a set of 𝐾 independent 1D signal convolutions
to be computed, one for each path. However, the filtering is
performed using the NVIDIA Performance Primitives library
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Figur e 4: Impulse response realization of the fading channel simulator considering the vehicular class B ITU multipath channel model
(𝑓max

𝐷

= 2000Hz, 𝑓
𝑠
= 10Msps).

(npp) [18]; specific lly, one of the nppiFilterRow functions
is used, which performs a 1D filtering on 2D data, each row
being a channel path.

4.3. PathGain Implementation. Th path gain is implemented
with a multiplication function. Th resulting colored noise
from the previous stage is multiplied by a scalar. This could
be carried out with a specific kernel or by using a standard
library, such as CUDA Basic Linear Algebra Subroutines
(cuBLAS) [19] or npp. The proposed implementation uses
the nppiMulC function of the npp library.

4.4. Upsampler. The upsampler stage is responsible for gen-
erating noise samples at the rate 𝑓

𝑠
, implemented as an inter-

polation. The usual interpolation available for GPUs is the
linear interpolation offered by texture memory; npp off rs
other methods for more accurate results. In this case,
the nppiResize function with a cubic interpolation is used.
It returns the interpolated value for a given coordinate within
two known noise values.

4.5. Tap Generator. Multiple paths have been treated sepa-
rately. In this stage, they are correlated using predefined
(computed offlin coeffici ts according to (11). This cor-
relation operation can be seen as the multiplication of 𝑁
upsampled scaled colored noise (path) by the coeffici t
matrix B[𝑚, 𝑘] = 𝐵(𝑚𝑇

𝑠
− 𝜏
𝑘
). This could be carried

out with a programmer’s own implementation or by using
a standard library, such as cuBLAS as well. This proposal
uses the cublasSgemm kernel that performs a matrix-matrix
multiplication with optional scalar product.

5. Implementation Results

In order to corroborate the functionality of the proposed
fading channel simulator in modern communication systems
such as WiMAX, it was configu ed with the following param-
eters [20, page 404]: a maximum frequency Doppler

Ta ble 1: Channel emulator implementation comparison. Time con-
sumption for 1mega samples generation and 10 channel realizations
(in milliseconds).

Matlab1 CUDA Libs2

Min 1640.895 37.376
Max 1821.171 75.186
Mean 1760.821 46.935
1CPU: Intel Core i5 3.4 GHz 16 GB.
2GPU: GeForce GTX 780M 4 GB.

𝑓max
𝐷

= 2000Hz and a sample rate 𝑓
𝑠
= 10Msps, 𝑓

𝑙𝑠
=

10𝑓max
𝐷

. In addition, the vehicular class B ITU multipath
channel model was considered, which consists of six discrete
paths with relative power [−2.5, 0, −12.8, −10, −25.2, −16] dB
at delay time [0, 300, 8900, 12900, 17100, 20000] nsec, respec-
tively. For implementing the filter B[𝑚, 𝑘], a raised cosine
function with a roll-off factor of 0.5 and a duration of
6𝑇
𝑠

sec was considered. This delay results in the generation
of 𝑀 = ⌈20 𝜇 sec+0.6 𝜇 sec⌉/(0.1 𝜇 sec) = 206 taps. In
Figure 4, a resulting GPU-based realization of the fading
channel according to the specifie parameters for 𝑁 = 1024

time samples is presented. It is important to note that the
offli computed data (see Figure 3) are transferred to GPU
simulator by text files.

Th simulation was carried out using an iMAC computer
with the following specific tions: OS 10.9.4 (Maverics), Intel
Core processor i5 (3.4 GHz), 16 GB of RAM, graphic card
GeForce GTX 780 M with 4 GB of RAM, and 1536 CUDA
cores.

For evaluating the time performance, the parameters used
in the previous test have been maintained; however, the
parameter 𝑁 was fixed to 𝑁 = 1 × 10

6 samples. In this
sense, Table 1presents the average, maximum, and minimum
time consumption for a CPU-based implementation (Matlab)
versus the proposed GPU-based methodology (CUDA). It is
clear that the GPU methodology has gains of 30-fold (mean
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Ta bl e 2: Time consumption by module computing 10 channel
realizations.

Time (%) Module
78.18% Matrix-matrix multiplication
13.62% Initializing random number generator1

3.83% FIR filter
2.37% Upsampling
1.62% Gaussian number generation
0.01% Path gain
1The seed initialization is carried out only once before the fi st channel
realization.

Ta bl e 3: Time consumption comparative (in milliseconds): CPU-
based implementation (Matlab) versus GPU-based implementation
(CUDA).

𝑁 Matlab1 CUDA2 Libs x-fold
(samples) (gain)
5,120 31.5466 0.614496 51
10,240 38.5282 1.350240 28
20,480 54.7829 2.331968 23
81,920 179.8391 5.785952 31
327,680 633.4515 17.09622 37
655,360 1204.584 25.36316 47
1,000,000 1769.243 37.81030 47
1,310,720 3024.966 47.43065 64
1CPU: Intel Core i5 3.4 GHz 16 GB.
2GPU: GeForce GTX 780M 4 GB.

value) when compared with CPU-based implementations,
which is attractive if parallel versions of the channel simulator
are required, as could be the case in MIMO applications.

Table 2 reports the time percentage for accomplishing
each task of the channel simulator in the GPU. It should
be noted that in this table the reading and device memory
allocation—the most time-consuming tasks—are not consid-
ered. These tasks are performed only once at the initialization
stage of the simulation.

On the other hand, Table 3 and Figure 5 present the
overall time consumption in milliseconds for CPU- and
GPU-based implementations when the number of samples
is fi ed to 𝑁 = 5120, 10240, 20480, 81920, 327680, 655360,
1000000, and 1310720 samples. Thi shows that while the
time consumption in the CPU-based implementation incre-
ments exponentially, it remains almost linear in the GPU-
based implementation.

Similarly, the good performance achieved with the GPU
implementation with respect to the CPU implementation
can be observed in the x-fold gain reported in Table 3. This
gain is calculated as the time consumption quotient of both
implementations.The behavior of this gain has been reported
for each of 𝑁 samples stated in the previous paragraph.

Finally, it is important to emphasize that the presented
approach can deal with several path realizations. This sug-
gests that the developed fading channel simulator can be
considered for generating large MIMO channels, which
represents a new simulation paradigm.
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Figur e 5: Time consumption comparative: CPU-based implemen-
tation versus GPU-based implementation.

6. Conclusions

Th principal result of this study is the introduction of a
methodology for designing fading channel simulators via
GPU devices. Such a methodology permits nonspecialized
users to easily implement channel simulators in parallel. As
was shown, the use of GPUs in the development of fading
channel simulators greatly saves simulation time when chan-
nel realizations are generated for testing communication sys-
tems. Moreover, a case of study for WiMAX systems demon-
strated the functionality of the implemented channel simula-
tor. We believe that the proposed parallel channel simulator
can aid in testing mobile communication systems based
on LTE and WiMAX. Additionally, the presented approach
based on GPU will allow the design of more sophisticated
simulators of complex channel models such as triply selective
MIMO fading channels (i.e., time, frequency, and space
selective).
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Multisystems, Québec, Canada, 2008.

[11] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation
of Communication Systems: Modeling, Methodology and Tech-
niques, Information Technology: Transmission, Processing and
Storage, Springer, Berlin, Germany, 2nd edition, 2000.

[12] P. Bello, “Characterization of randomly time-variant linear
channels,” IEEE Transactions on Communications, vol. 11, no. 4,
pp. 360–393, 1963.

[13] J. V. Castillo, A. C. Atoche, O. Longoria-Gandara, and R. Parra-
Michel, “An effici t Gaussian random number architecture for
MIMO channel emulators,” inProceedings of the IEEEWorkshop
on Signal Processing Systems (SiPS '11), pp. 316–321, Beirut,
Lebanon, October 2011.

[14] L. Vela-Garcia, J. V. Castillo, R. Parra-Michel, and M. Pätzold,
“An accurate hardware sum-of-cisoids fading channel simulator
for isotropic and non-isotropic mobile radio environments,”
Modelling and Simulation in Engineering, vol. 2012, Article ID
542198, 12pages, 2012.

[15] J. Vázquez Castillo, L. Vela-Garcia, C. Gutiérrez, and R. Parra-
Michel, “A reconfigur ble hardware architecture for the sim-
ulation of Rayleigh fading channels under arbitrary scattering
conditions,” AEU, vol. 69, no. 1, pp. 1–13, 2015.

[16] V. Kontorovich, S. Primak, A. Alcocer-Ochoa, and R. Parra-
Michel, “MIMO channel orthogonalisations applying universal
eigenbasis,” IET Signal Processing, vol. 2, no. 2, pp. 87–96, 2008.

[17] NVIDIA, CUDA random number generation library (cuRAND),
2014, https://developer.nvidia.com/curand.

[18] NVIDIA, “NVIDIA performance primitives NVIDIA developer
zone,” https://developer.nvidia.com/npp.

[19] NVIDIA, CUDA basic linear algebra subroutines (cuBLAS),
2014, https://developer.nvidia.com/cublas.

[20] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals
of WiMAX: Understanding Broadband Wireless Networking,
Prentice Hall, Upper Saddle River, NJ, USA, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


