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of Service (QoS) parameters. Our studies have revealed that VolIP jitter can be modeled
by self-similar processes with short range dependence (SRD) or long range dependence

531‘;"“‘15: (LRD). The discovery of LRD (a kind of asymptotic fractal scaling) in VoIP jitter was followed
Packet loss by a further work that shows the evidence of multifractal behavior. The implication of
Jitter these behaviors for VoIP and other interactive multimedia services is that receiver de-jitter
Hurst parameter buffer may not be large enough to mask the jitter with LRD and multifractal characteristics.
Markov chains On the other hand, we use a description of VoIP packet loss based on microscopic and
Multifractality macroscopic packet loss behaviors, where these behaviors can be modeled by 2-state and

4-state Markov chains, respectively. Based on the above mentioned points, we present a
methodology for simulating packet loss. Besides, we found relationships between Hurst
parameter (H) with the packet loss rate (PLR); these relationships are based on voice traffic
measurements and can be modeled by means of a power-law function, characterized by
three fitted parameters. The proposed models can be used to: (i) design a de-jitter buffer,
(ii) implement a synthetic generator of VolIP jitter data traces, where the synthetic jitter
data traces can be used as test vectors to carry out the performance evaluation of a de-
jitter buffer of VoIP system, and (iii) design effective schemes for packet loss recovery.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this era, voice can be transmitted by circuit switched (public switched telephone network — PSTN) and packet
switched networks (Internet or IP network). Compared to traditional resource-dedicated PSTN, IP network is resource-
shared. Therefore, the conditions in the PSTN are totally different from those in the IP network. In the last few years,
VoIP has became one of the most attractive and important applications running on the Internet, poised to replace the
PSTN in the future. There are several advantages in the case of voice transmission using VoIP technology: the reduced
communication cost, the use of joined IP infrastructure, the use in multimedia applications, etc. Another interesting fact
is that sending wireless phone calls over IP networks is considerably less expensive than that of sending over cellular
voice networks. However, such types of communications must ensure good performance and quality of voice transmissions.
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Faster wireless networking technologies and more powerful mobile telephones promise to help solve these problems [1,2].
With the currently available technologies, VoIP over mobile networks is not yet very popular. However, the advantage of
such technology is that keeping the wireless network as it is, with a higher Quality-of-Service (QoS) facility, the existing
infrastructure of IP networks could be used for serving the users. If a company owns the WiFi connection, such VoIP
communication could be very cheap. If either the WiFi or WiMAX network are unavailable, cellular technologies could be
used to pass the voice traffic to the Internet. This is known as Mobile Voice over IP (mVoIP). mVoIP via cellular services could
achieve QoS by prioritizing voice packets over those used for data and other traffic types.

The reality today is that the current Internet provides best-effort services in most of the cases and cannot guarantee the
Quality of Service of real-time multimedia applications (such as VoIP). To achieve a satisfactory level of voice quality, the VoIP
networks must be designed by using correct traffic models. Traffic modeling comprises the follows steps [3]: (i) Selection of
one or more models that may provide a good description of the traffic type. In order to select an adequate traffic model,
it is necessary to study the traffic characteristics. The main characteristics of a traffic source are its average data rate,
burstiness, and correlation. The average data rate gives an indication of the expected traffic volume for a given period of time.
Burstiness describes the tendency of traffic to occur in clusters. Data burstiness is manifested by the correlation function
which describes the relation between packet arrivals at different times, and is an important factor in packet losses due
to buffer and bandwidth limitations. (ii) Estimation of parameters for the selected model. Parameter estimation is based
on a set of statistics (e.g., mean, variance, density function or autocovariance function, multifractal characteristics) that
are measured or calculated from observed data traces. The set of statistics used in the inference process depends on the
impact they may have on the main QoS parameters of interest. (iii) Statistical testing for election of one of the considered
models and analysis of its suitability to describe the traffic type under analysis. One of the models which has been widely
applied in classical teletraffic modeling is the Poisson model. However, the IP networks traffic has different characteristics
and the Poisson approximation will be acceptable only under particular conditions [4]. In recent years several types of IP
traffic behavior, that can have significant impact on network performance, were discovered [3]: long-range dependence,
self-similarity and, more recently, multifractality. Long range dependent traffic produces a wide range of traffic volume
away from the average rate. This great variation in the traffic volume leads to buffer overflow and network congestion that
result in packet loss and jitter, which directly impact on the quality of VoIP applications.

Amongst the different quality parameters, packet loss is the main impairment which makes the VoIP perceptually most
different from the PSTN. A number of studies have shown that packet losses exhibit a finite temporal dependency due to the
multiplexing policy on the shared resources such as bandwidth and buffer through the transmission paths in the network.
This temporal dependency can be modeled by a finite memory binary model. An example of such a model is the binary
Markov chain model [5,6]. The objective of packet loss modeling is to characterize its probabilistic behavior.

Motivated by such concerns, we analyze the jitter and packet loss behavior of VoIP traffic by means of network
measurements and simulations results. Furthermore, we provide a detailed characterization and accurate modeling of these
main QoS parameters. We basically modeled the QoS parameters of VolIP traffic which could be related with regular VoIP
communications over regular wired networks as well as for Mobile Voice over IP (mVOIP) (which functions as an application
that runs over any wireless network technology that provides data access to the Internet). Hence, our modeling work is
basically relevant to both regular VoIP and mVoIP technologies. These characterization and models can be used by other
researches to design and implement de-jitter buffers, synthetic generators of VolIP jitter data traces and effective schemes
for packet loss recovery.

The main contributions of this paper are summarized as follows:

1. Arich set of VoIP data traces was collected by means of network measurements.

. A VolIP jitter model was proposed by self-similar and multifractal models.

3. A description of VoIP packet loss based on microscopic and macroscopic packet loss behaviors was suggested, where
these behaviors can be modeled by 2-state and 4-state Markov models, respectively.

4. A methodology for simulating packet loss on VolIP traffic by means of a 4-state Markov model was proposed.

5. Arelationship between the Hurst parameter and the Packet Loss Rate was found, where this relationship can be modeled
by means of a power-law function with three fitted parameters.

\S]

The paper is organized as follows: Section 2 presents related works. Section 3 provides some mathematical background
on the self-similar processes. Section 4 presents the measurements description. In Section 5, we discuss the jitter and packet
loss behaviors. In Section 6, we propose that VolIP jitter can be modeled by self-similar and multifractal models. In Section 7,
we present a methodology for simulating packet loss on VolIP traffic and propose a new model that allows relating the H
parameter with the PLR. Finally, Section 8 concludes the paper highlighting the achievements from this work with possible
future use of our findings.

2. Related works

There is an extensive amount of work oriented to the studies of Internet traffic. Different studies take a different
perspective depending on their specific interest. The Internet research literature contains many analyses of data traffic
measurements. However for VoIP, there are very few studies in the literature that report on the analysis of VoIP data traces
captured on operational links of the Internet backbone. Such studies are needed in order to build accurate VolIP traffic models,
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which are a basis for the design of VoIP applications, network engineering and the development of Internet technology.
VolIP requires strict QoS levels. The quality of a VoIP call depends mainly on low jitter and packet loss. Based on [7], QoS
requirements for VoIP are constrained as follows: (i) jitter should be less than 40 ms, and (ii) packet loss should be below 3%.
We are interested in the measurements, characterization and modeling of these QoS parameters of voice communications
over the Internet.

In [7-9] the QoS parameters of VoIP applications are studied, though, the relationships between them to assess the
overall effects of these parameters are not considered. Therefore, these studies are limited, because the impact of these
QoS parameters is analyzed separately from the others. In this work, we show that some QoS parameters are intricately
related to each other.

It has been shown through empirical studies that data traffic exhibits self-similar nature and long range dependence
(LRD) [10-12]. The presence of LRD, is remarkably universal, and has become an indispensable part of traffic modeling, in
particular for TCP/IP traffic in the Internet [13]. Furthermore, the discovery of evidence for multifractal behavior, a richer
form of scaling behavior associated with non-uniform local variability, raised hopes that another “traffic invariant” had
been found which could lead to a complete, robust model of aggregate wide area network (WAN) traffic over all time
scales [13]. The multifractal behavior of network traffic was first noticed by Riedi and Véhel [14]. Subsequently, various
studies have addressed the characterization and modeling of multifractal traffic, essentially within the framework of random
cascades [15-17].

On the other hand, in the Internet, packet losses that occur due to temporary overloaded situations, are bursty in nature
and they exhibit temporal dependency [5]. So, if packet n is lost, then normally there is a higher probability that packet
(n+ 1) will also be lost. Consequently, there is a strong correlation between consecutive packet losses, resulting in a bursty
packet loss behavior. This temporal dependency can be effectively modeled by a finite Markov chain [5,6].

Previous works [18,19] presented a methodology for simulating packet loss. This methodology is restricted, because
it incorporates only one microscopic period of packet loss by using a 2-state Markov chain. In order to generalize this
methodology, in this work we proposed to incorporate “n” microscopic periods of packet loss by means of 4-state Markov
chain.

In contrast to the above works, in this paper, we analyze VoIP traffic by means of network measurements and simulations
results. As a result of these analyses, we provide a detailed characterization and accurate modeling of the main QoS
parameters at packet level that could help both VoIP and mVoIP technologies.

3. Mathematical backgrounds and preliminaries

3.1. Self-similar processes

An attractive property of the self-similar processes for modeling a time series of IP traffic is the degree of self-similarity,
which is expressed with a single parameter called the Hurst parameter. This parameter expresses the speed of decay of the
autocorrelation function of the time series. In this section, a brief overview of self-similar processes is given from [10-12].

Continuous Self-similarity: Areal-valued continuous time series {X (t), t € N} is self-similar with the exponent0 < H < 1
if, for any a > 0, the finite-dimensional distributions of {X (at) , t € )i} are identical to the finite-dimensional distributions
{d"X(0), t € 9} ie, {X (at),t € N 4 {a"X(t), t € %}, where £ denotes equality in distribution.

Discrete Self-similarity: Let X; = (X;;t € N) denote a discrete time series with mean vy, variance a)?, autocorrelation
function r (k) and autocovariance function (ACV) y (k), k > 0; where X; can be interpreted as the jitter, at time instance t.

When considering discrete time series, the definition of self-similarity is given in terms of the aggregated processes, as
follows:

(m) (m),
X" = (X" ke N) (1)
where m represents the aggregation level and X,fm) is obtained by averaging the original series X; over non-overlapping
blocks of size m, and each term X,fm) is given by:

1 km
XM=—= 3" Xz k=123.... )
i=(k—1)m+1
Then it is said that X; is self-similar (H — ss) with self-similarity parameter (0 < H < 1) if:
x™ L -1y, (3)
Second-order Discrete Self-similarity: X; is called exactly second order self-similar with Hurst parameter H if the variance
and covariance of the aggregated time series are defined by Eqs. (4) and (5), respectively:

var (X,f”“) =oyp -m*? (4)

2
(k) = ‘%X ((k+ 1% — 2k 4+ (k— 1)) k> 1. (5)
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The time series X; is called asymptotically second-order self-similar if:
o2
lim y™(k) = = ((k+ D> =227 + (k — D). (6)
m— 00 2

Second-order self-similarity (in the exact or asymptotic sense) has been a dominant framework for modeling IP traffic.
So far role of second-order self-similarity has been discussed but not much has been mentioned about the role of H and
limiting values. The definition of long range dependence and its interconnection with the correlation factor r (k) will now
be discussed.
Let r(k) = y (k) /a)? be the autocorrelation function of X; with self-similarity parameter 0 < H < 1, H % 1/2, then the
asymptotic behavior of r (k), is given by Eq. (7):
r(k) ~HQH - 1) K2 k- 0. (7)

In particular, if% < H < 1, r(k) asymptotically behaves as ck™" for 0 < n < 1, where ¢ > 0is a constant, =2 — 2H
and this also means that the correlations are nonsummable: > .~ r(k) = oo. That is, the autocorrelation function decays

slowly. When r (k) obeys a power-law, the corresponding stationary process X; is called long range dependent. On the other
hand, X; is short range dependent if the sum ZZZ oo F'(K) < 00 does not diverge.

Generally speaking, time series with long-range dependence has a Hurst parameter 0.5 < H < 1, on the other hand,
time series with short-range dependence has a Hurst parameter 0 < H < 0.5.

3.2, Haar wavelet-based decomposition and Hurst index estimation

The time series X; can be decomposed into a set of time series [20], each defined by:
. - )
cl=x""P-xPP ien 8)

i
where Xt(2 B is the time series X; after two operations, which are:

1. Aggregation at level 2/, as defined by Eqgs. (1) and (2). i.e.,, m = 2'.
2. Expansion of level 2{, which consists of ‘repeating’ each element of a time series 2 times.

i i :
i.e.,Xj(2 D =x fork =1+ LJ;—,]J andj € N.
These zero mean components Cf't have three important properties:

1. They synthesize the original time series without loss, i.e.,
X =) G (9)
i

2. They are pairwise orthogonal:

<c§;?, cjﬂ —0; forij #i. (10)

3. If X; is exactly self-similar, then the variance of the components comply:
var(Cy) = 2272 var(Cyy ). (11)

Properties 1, 2 and 3 imply Eqgs. (12) and (13):

a)% = Zvar(C§:£ (12)
i
oro L -var(C2h (13)
X7 1 - 2H-2 X.t/*

Then, the variance of the ith component is related to the variance of X; as following:
var(Gy) = (1—1) -1 . of (14)
where

r =222, (15)
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Fig. 1. Measurement scenario.

Table 1
Parameter configuration employed in the test calls.
Set A1/B1 A2/B2 A3/B3 A4/B4
Set 1 G.711 G711 G.711 G711
10 ms 20 ms 40 ms 60 ms
Set2 G.729 G.729 G.729 G.729
10 ms 20 ms 40 ms 60 ms
Set3 G.711 G.711 G.729 G.729
10 ms 20 ms 10 ms 20 ms
Set4 G.711 G.711 G.729 G.729
40 ms 60 ms 40 ms 60 ms

The plot logz[var(C)%:i)] vs. i is equivalent to the wavelet-based diagram proposed in [17], the Logscale Diagram

(LD-Diagram); i.e., var(Cy’}) = E‘dxyﬂ when using the Haar family of wavelet basis functions v x (t) = 277/2yro (277t — k)
(see [21]) where:

+1 0<t<1/2
Yo(t) =1—-1 1/2<t<1 (16)
0 otherwise.

For a finite-length time series with “L” octaves, the number of octaves (j) of the LD-Diagram is related to index i of Eq. (8),
according to Eq. (17):

j=i. (17)

The LD-Diagram of an exactly self-similar time series is a straight line. Then, a linear regression can be applied in order
to estimate the Hurst index.

4. Network measurements

In order to accomplish our analysis, extensive jitter and packet loss measurements were collected, as follows:

e Test calls were established by a VoIP application called “Alliance Foreign eXchange Station” (FXS) [22].

e The jitter and packet loss were measured by Wireshark [23] to obtain a set of data traces.

e The measurement scenario was based on a typical H.323 architecture; see Fig. 1.

e The parameter configuration employed in the test calls is shown in Table 1:
- Four simultaneous test calls were established between A1/B1, A2/B2, A3/B3 and A4/B4 endpoints, see Fig. 1 and Table 1.
- The configurations used in the test calls are based on two parameters: CODEC type (G.711 and G.729), and voice data

length (10 ms, 20 ms, 40 ms and 60 ms), see Table 1.

- The measurement periods were one hour for each test call (call duration time).
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Sender Receiver

IDT(K)=S5x-Sk.1 IAT(K)=Ry-Ry.

Fig. 2. Jitter experienced across Internet paths.

- For each measurement period (one hour), four jitter and packet loss data traces were obtained.
- The four configuration sets contain more than one hundred-thirteen million voice packets corresponding to 710 jitter
and 710 packet loss data traces, measured during typical working hours, between 2004 and 2010 [24].

5. Jitter and packet loss behavior

The voice quality of VoIP applications depends on many parameters; such as bandwidth, one way delay (OWD), jitter,
packet loss rate, codec, voice data length, and de-jitter buffer size. In particular, jitter and packet loss have an important
impact on voice quality. In this section, we describe the jitter and packet loss behavior.

5.1. Jitter

When voice packets are transmitted from source to destination over IP networks, packets may experience variable delay,
called jitter. The packet inter-arrival time (IAT) on the receiver side is not constant even if the packet inter-departure time
(IDT) on the sender side is constant. As a result, packets arrive at the destination with varying delays (between packets)
referred to as jitter. We measure and calculate the difference between arrival times of successive voice packets that arrive
on the receiver side, according to RFC 3550 [25], this is illustrated in Fig. 2. This figure shows the jitter measurement between
the sending packets and the receiving packets.

Let Sk be the RTP timestamp and Rg be the arrival time in RTP timestamp units for packet K. Then, for two packets K and
K — 1, the OWD difference between two successive packets, K and K — 1 is given by the Eq. (2):

JK) = (Rg — Sk) — (Rg—1 — Sk—1) = (Rx — Rx—1) — (S — Sx—1) = IAT(K) — IDT(K) (18)
IAT(K) = J(K) + IDT(K) (19)

where, IDT(K) = (Sx — Sk—1) is the inter-departure time (in our experiments, IDT = {10 ms, 20 ms, 40 ms, and 60 ms})
and IAT(K) = (Rx — Rk_1) is the inter-arrival time or arrival jitter for the packets K and K — 1. In the current context, IAT(K)
is referred to as jitter.

On the other hand, the voice data lengths of 10 ms, 20 ms, 40 ms and 60 ms are used and the successive voice packets
are transmitted at a constant rate, i.e., 1 packet/10 ms, 1 packet/20 ms, 1 packet/40 ms and 1 packet/60 ms, respectively.
However, when voice packets are transported over IP networks, they may experience delay variations and packet loss. From
Eq. (19), a relationship between jitter and packet loss can be established using the following equations:

If packet K — 1 is lost,

IAT(K) = J(K) + (2) - IDT(K). (20)
Therefore, if n consecutive packets are lost,
IAT(K) = J(K) 4+ (n 4+ 1) - IDT(K). (21)

Therefore, Eq. (21) describes the packet loss effects in the VolIP jitter. The relationship expressed by this equation can be
used for simulating packet loss (see Section 7.2).

5.2. Packet loss

There are two main transport protocols used on IP networks, user datagram protocol (UDP) and transmission control
protocol (TCP). While UDP protocol does not allow any recovery of transmission errors, TCP includes an error recovery
process. However, the voice transmission over TCP connections is not very realistic. This is due to the requirement for
real-time (or near real-time) operations in most voice related applications. As a result, the choice is limited to the use of
UDP which involves packet loss problems. Packet loss can occur in the network or at the receiver side, for example, due to
excessive network delay in case of network congestion.

Owing to the dynamic, time varying behavior of packet networks, packet loss can show a variety of distributions. The
loss distribution most often studied in speech quality tests is random or Bernoulli-like packet loss. Random loss here means
independent loss, implying that the loss of a particular packet is independent of whether or not previous packets were lost.
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Fig. 3. 2-state Markov chain.

However, random loss does not represent the loss distributions typically encountered in real networks. For example, losses
are often related to periods of network congestion. Hence, losses may extend over several packets, showing a dependency
between individual loss events. In this work, dependent packet loss is often referred to as bursty. The packet loss is bursty
in nature and exhibits temporal dependency [5]. As noted earlier in the Introduction, if packet n is lost then normally there
is a higher probability that packet n + 1 will also be lost. Consequently, there is a strong correlation between consecutive
packet losses, resulting in a bursty packet loss behavior. Hence, this temporal dependency can be effectively modeled by a
finite Markov chain [5,6]. In this work, the 2-state and 4-state Markov chains are used.

LetS =S4, Sy, ..., Sy be the m states of an m-state Markov chain and let p; be the probability of the chain to pass from
state S; to the state S;. The probabilities of transitions between states can be represented by the transition matrix P:

S S, -+ Sp
St S, -+ Sy

P=1. . . (22)
St Sy -+ Sm

suchthatS; + S, +---+ S5, = 1.

In the 2-state Markov chain (see Fig. 3), one of the states (S;) represents a packet loss and the other state (S, ) represents
the case where packets are correctly transmitted or received. The transition probabilities in this model are represented by
P21 and pi,. In other words, p,; is the probability of going from S, to S, and p; is the probability of going from S; to S,.
Different values of p,; and p1, define different packet loss conditions that can occur on the Internet.

The steady-state probability of the chain to be in the state S;, namely the PLR, is given by Eq. (23) [26]:

D21

S = 221 (23)
! D21 + P12

and clearly S; = 1 — Sj.

The collected data traces in real IP networks can be modeled accurately with a higher number of states, i.e., n-state
Markov chains. However, for network planning, a trade off is desirable between very accurate modeling of data traces and
a low number of model input parameters, in order to yield a model still usable for network planners with reasonable effort.
Therefore, we used a simplification of an n-state chain, i.e., the 4-state Markov chain. Fig. 4 shows the state diagram of
this 4-state Markov chain. In this model, a ‘good’ and a ‘bad’ state are distinguished, which represent periods of lower and
higher packet loss, respectively. Both for the ‘bad’ and the ‘good’ state, an individual 2-state Markov chain represents the
dependency between consecutively lost or found packets.

The two 2-state chains can be described by four independent transition probabilities (two for each one). Two further
probabilities characterize the transitions between the two 2-state chains, leading to a total of six independent parameters
for this particular 4-state Markov chain.

In the 4-state Markov chain, states S; and S; represent packets lost, S, and S4 packets found and six parameters
(P21, P12> D3> P34, P23, P32 € (0, 1)) are necessary to define all the transition probabilities. The four steady-state probabilities
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Fig. 4. 4-state Markov chain.
of this chain are [26]:
1
S1= 14 Pz | Pi2Pas | P1aP23P4 (24)
P21 P21P32  P21P32P43
1
52:1+m+m+m (25)
P12 P32 P32P43
1
S3 = 14 B34 4 P2 | PP (26)
pa3 P23 DP12b23
1
S4 = (27)

1 P43 P32P43 P21P32P43 *
+ P34 + P23P34 + P12P23P34

The probability of the chain to be either in S; or in S3, which corresponds to PLR, is thenr = S; + S3 [26].
6. Jitter modeling

6.1. Self-similarity, SRD and LRD

Time-dependent statistics (e.g., correlation) are important for performance evaluation of IP networks. These statistics
can be used to measure the impact of specific impairments. Several studies have found that self-similarity and long-range
dependence can have a negative impact in data traffic, because they give rise to great losses and/or delays. For this reason, it
is important to analyze the correlation structures (SRD and LRD) of the VoIP traffic. The Hurst parameter is used to measure
the degree of self-similarity and LRD. Generally speaking, time series with long-range dependence have a Hurst parameter
of 0.5 < H < 1, on the other hand, time series with short-range dependence have a Hurst parameter of 0 < H < 0.5.

Unlike other statistics, the Hurst parameter, although mathematically well defined, cannot be estimated unambiguously
from real-world samples. Therefore, several methods have been developed in order to estimate the Hurst parameter.
Examples of classical estimators are those based on the R/S statistic [27] (and its unbiased version [28]), detrended
fluctuation analysis (DFA) [28,29], maximum likelihood (ML) [30], aggregated variance (VAR) [27], wavelet analysis [17],
etc.In [31], Clegg developed an empirical comparison of estimators for data in raw form and corrupted in various ways. An
important observation is that the estimation of the Hurst parameter may differ from one estimator to another, which makes
the selection of the most adequate estimator a difficult task. It seems to depend on how well the data sample meets the
assumptions the estimator is based on. However, through analytical and empirical studies it has been discovered that the
estimators that have the best performance in bias and standard deviation, and, consequently, in mean squared error (MSE),
are the Whittle ML and the wavelet-based estimator proposed by Veitch and Abry in [17]. From these two estimators, the
wavelet-based is computationally simpler and faster [27,17].
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Motivated by the above points, and following the methodology proposed in [32] to find correlations and long-range
dependence, the Hurst parameter is estimated by the wavelet-based estimator [17] of jitter data traces as a function of the
aggregation level m (m = {1, 2, 4, 8, 16, 32, 64, 128}). Fig. 5 shows the Hurst parameter of representative jitter data traces
to different aggregation levels m. Generally, Hurst parameters larger than 0.5 for all aggregation levels are a strong indication
of long-range dependence. It can be observed from Fig. 5 that a set of jitter data traces has Hurst parameters larger than 0.5
for all aggregation levels. This indicates a high degree of long-range dependence (LRD). In contrast, other sets of jitter data
traces have Hurst parameters lower than 0.5. These results are thus not a strong indication of long-range dependence. This
indicates that the autocovariance functions decay quickly to zero, indicating no memory property (SRD).

In order to complement the above analysis, a study was made of the behavior of autocovariance functions of the
corresponding jitter data traces in Fig. 5.

Fig. 6 shows the comparison between the autocovariance function of a measured data trace with H = 0.35 and the
theoretical autocovariance function. It can be observed that the autocovariance function of the measured data trace behaves
similarly to the ideal model and decay quickly to zero. This result confirms the presence of short-range dependence or
memoryless property in VoIP jitter data traces.

In contrast, a comparison was made between the autocovariance function of a measured data trace with H = 0.58 and
the theoretical autocovariance function, as shown in Fig. 7. In this figure, a similar behavior can be observed between these
autocovariance functions and a very slow decaying from them. This behavior indicates the presence of a high degree of
long-range dependence or long memory property.

These results show that VolIP jitter exhibits self-similar characteristics with short- or long-range dependence, therefore, a
self-similar process can be used to model the jitter behavior. However, we can see that the data traces with SRD have a higher
degree of self-similarity in contrast to the data traces with LRD. In the next section we give an explanation of this behavior.

6.2. Multifractal behavior

The network analysis was transformed by the discovery of scale invariance properties in the data traffic (self-similarity).
So also, the presence of long range dependence has become an important part of traffic modeling, in particular for data traffic.
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Fig. 8. Components behavior of VolIP jitter data traces: monofractal behavior.

The discovery of LRD and weak self-similarity in the VolIP jitter data traces was followed by a further work that shows the
evidence for multifractal behavior. The discovery of evidence for multifractal behavior is a richer form of scaling behavior
associated with non-uniform local variability, which could lead to a complete and robust model of IP network traffic over
all time scales.

In this section, we review the evidence for multifractal behavior of VolP jitter. In order to accomplish this analysis, we
decomposed the time series of VoIP jitter into a set of time series or components C)f:'t as it is defined in Eq. (8). The behavior
of these components is used to determine the kind of asymptotic fractal scaling. If the variance of the components of a time
series is modeled by a straight line, the time series exhibits monofractal behavior. Then, a linear regression can be applied in
order to estimate the Hurst parameter. On the other hand, if the variance of the components cannot be adequately modeled
with a linear model, then the scaling behavior should be described with more than one scaling parameter, i.e., the time
series exhibits multifractal behavior. [33]. In Figs. 8 and 9, we show the components behavior of the collected VolIP jitter
data traces.

Fig. 8 shows the components behaviors of a VolIP jitter data trace that belong to the data sets with SRD. It is observed
that the variance of the components of this time series is modeled by a straight line; therefore, the time series exhibits
monofractal behavior.

Fig. 9 shows the components behaviors of a VolIP jitter data trace that belong to the data sets with LRD. It is observed
that the variance of the components of this time series cannot be adequately modeled with a linear model, and the scaling
behavior should be described with multiple scaling parameters (biscaling), therefore, this time series exhibits multifractal
behavior.

These results show that VolP jitter with SRD or LRD, exhibit monofractal or multifractal behavior, respectively. This
phenomenon explains the behavior of the data traces with SRD and high degree of self-similarity (scale invariance), because
the self-similarity is defined for a single scale parameter. On the other hand, the data traces with LRD, exhibit weak self-
similarity because have associated non-uniform local variability (multifractal behavior).
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7. Packet loss modeling: A power law model

7.1. Packet loss model framework

In this paper, a description of VoIP packet loss based on narrow and wide time windows was used. The packet loss
behavior over a narrow time window is called here microscopic, and the packet loss behavior over wide time windows is
called macroscopic [34]. Microscopic behavior refers to a packet loss period observed on a “time window” W; of the packet
loss data trace; where, this packet loss period has a specific PLR;.

On the other hand, macroscopic behavior refers to a set of microscopic periods (W, W5, W3, ..., W,,) that are observed
on all packet loss data traces; where, each microscopic period has a particular PLR(PLR,, PLR;, PLRs, ..., PLR,), as shown in
Fig. 10(a). Fig. 10(a) illustrates different levels of PLR for each microscopic period. Therefore, the packet losses do not occur
homogeneously. Instead, they are concentrated in some time intervals (i.e. the packet loss is bursty).

Microscopic behavior can be effectively modeled by a Markov chain with a low number of states [34]. On the other hand,
macroscopic behavior can be effectively modeled by a Markov chain with a higher number of states [34]. Here, sub-states
represent phases of a given microscopic behavior. Ideally, an n-state Markov chain is required to capture the macroscopic
behavior. Especially for network planning, a trade off is desirable between very accurate modeling of data traces and a
low number of model input parameters, in order to yield a model still usable for network planners with reasonable effort.
Therefore, the 2-state Markov chain proposed in [34] for modeling the microscopic and macroscopic periods was used.

Fig. 10(b) and (c) show some packet loss patterns extracted from VoIP test calls. In Fig. 10(b), we can see that packet loss
behavior is homogeneous, i.e., the packet loss pattern is represented by a microscopic period. On the other hand, in Fig. 10(c)
the packet loss is non homogeneous, i.e., the packet loss pattern is represented by a concatenation of two microscopic
periods.

In order to simplify this packet loss description, the microscopic periods can be classified in two sets, one for low and
one for high packet loss rates. The threshold used to delimit between a low or high level of packet loss, is a function of the
perceived quality, good or poor respectively, according to the computed MOS values. In Fig. 10(b) and (c), the microscopic
period with lower packet loss rate is delimited by the solid square, while the microscopic period with higher packet loss
rate is delimited by the dashed square.

7.2. Methodology for simulating packet loss

The current methodologies for simulating packet loss consist only of generating packet loss patterns by Markov chains
of different orders [34]. Therefore, the studies based on this methodology are limited, because the impact of this parameter
is analyzed separately from the others. A new methodology to simulate packet loss in two stages is proposed: first, by
generating packet loss pattern by a 4-state Markov chain and secondly, by applying this packet loss pattern to a VolIP jitter
data trace, i.e., the simulation of the effect of this packet loss pattern in the VolIP jitter by the relationship between packet
loss and jitter, as shown in Eq. (21).

In order to simplify this methodology and achieve the trade-off between very accurate modeling of data traces and a low
number of model input parameters, we consider the following:

e The relationship between packet loss rate and jitter, summarized by Eq. (21).
e The description of VoIP packet loss based on microscopic and macroscopic behaviors.



H. Toral-Cruz et al. / Mathematical and Computer Modelling 57 (2013) 2832-2845

2843

PLR [%]
r " .
Macroscopic Packet Loss Behavior
PLR; | — — — — — — — — —p—— e — — — 4 - -
PIR g — — — — — — - — — — — —  — — — — — — — — 4 - -
....................................................... a== PLR
PIRs == - — - - - — =TT
PR, F——+4+----—-—|--—-———- —-——1- 1
] 1 ] ! l
PLR; 1 { f { f
W, W, W; W, W5 Time [sec] [ ]l ‘ | |
L | | | | |

0 1 2 3 4 5 6

Periods of Different Microscopic Packet Loss Behavior Samples x 104

(a) Microscopic and macroscopic behavior. (b) Homogeneous PLR.

-

0 1 2 3 4 5 6
Samples x 10
(c) Non homogeneous PLR.

Fig. 10. Packet loss descriptions from VolIP test calls.

Table 2
Algorithm for applying the packet loss patterns.

FORn=2toN
IF(P[n] =1)
X[n] = X[n] + X[n — 1]
END IF
END FOR
i=1
FORn=2toN
IF(P[n] # 1)
X[il = X[n — 1]
i=i+1
END IF
END FOR

e A set of real jitter and packet loss data traces, where the jitter data traces exhibit self-similar characteristics and the
packet loss data traces are homogeneous, as shown in Fig. 10(a). Then, these packet loss patterns can be represented by
only one microscopic period with a low level of packet loss rate PLR, (near zero).

e Inorder to incorporate “n” microscopic packet loss periods with high level of PLR, as it is shown in Fig. 10(b), we generated
packet loss patterns by means of a 4-state Markov chain.

LetX = {X; :t =1,...,N} be a VoIP jitter data trace with a length of N, self-similar (H parameter 0 < Hy < 0.5),
and with a low packet loss rate PLR,. The packet loss patterns are generated by means of a 4-state Markov chain, and are
represented as the binary sequences P = {Pf t=1,...,N;t=0,1,2,...,T — 1}, where P! = 1 means a packet loss,
P{ = 0 means a success or received packet, N is the length of the packet loss pattern and T is the number of packet loss
patterns used. The relationship between jitter and packet loss from Eq. (21) is used to apply the packet loss patterns to X;
by the algorithm shown in Table 2.

As a result of using the above algorithms, the new time series )A(tr were obtained, fort =1,...,Nand7t =0,1, 2, ...,

T — 1. For each )A(f the PLR and H parameter were calculated, and the functions f (PLR,, H;) were generated.

7.3. Simulation results

In this section, applying the methodology proposed above, simulation results are presented. The simulations are
accomplished over the measured VolIP jitter data traces. Fig. 11 illustrates the relationships between the packet loss rate
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Table 3

Fitted parameters of Fig. 11.
f(PIR.. Ho)  Hy a b MSE
G711 0.0428 0.5659 0.2760  0.001474
G.729 0.0430 05716  0.2805  0.002305

freaL (PLR:, H;) 0.0429  0.5471  0.2475

and the Hurst parameter. The figure shows the empirical functions f (PLR;, H;) that were obtained from simulation results
and the function fggar (PLR,, H,).

The functions f (PLR,, H;), resulted from applying “T” packet loss patterns to representative VolIP jitter data traces X;.
In these functions, each point represents the PLR; and H, of a particular new time series )A(tr . The function frgar (PLR,, H,) is
generated by “E” jitter data traces. In this function each point represents the PLR, and H, of a particular jitter data trace X7,
wheret =1,...,N,e =1,2,...,E, and “E” is the number of representative jitter data traces used.

The respective differences between the functions corresponding to simulation results f (PLR,, H;) and the function
freaL (PLR,, H,), were quantified in terms of MSE.

Table 3 shows the fitted parameters and MSE between f (PLR,, H;) and frea. (PLR., H,). The results are summarized in
Fig. 11 and Table 3. As a result of this analysis, we conclude that the presented methodology for simulating packet loss,
achieved the trade-off between a very accurate modeling and a low number of model input parameters. Based on these
results, it is proposed that the relationships found between packet loss rate and Hurst parameter can be modeled by a
power-law function, as shown in section the 7.4.

7.4. Proposed model based on the obtained results

From the simulations that have been carried out, it was found that the relationship between the H parameter and the
PLR can be modeled by a power-law function, characterized by three fitted parameters, as follows:

Hy = Ho + @ (PLR)? (28)

where H,, is the H parameter of the model found; I:IO, a,and b are the fitted parameters; I:IO isthe H parameter when PLR = 0.
The fitted parameters are estimated by linear regression. The strategy to find, Ho, a, and b is such that it minimizes the mean

A

squared error, i.e. MSE = fr(I:Ia“ari’ — H,)?dr, and the validity of the proposed model corresponds to those ranges of r = PLR
(e.g. 0%-4%).

8. Conclusions and future research direction

In this paper, the jitter and packet loss behavior of VoIP traffic have been analyzed which could be useful both for today’s
networks and future networks supporting VoIP/mVoIP technologies. As a result of our findings and thorough analyses, a
detailed characterization and accurate modeling of the main QoS parameters was provided. Firstly, we proposed that VoIP
jitter can be properly modeled by means of self-similar and multifractal models. Secondly, a methodology for simulating
packet loss on VolIP Jitter was presented. This methodology is based on:

e The relationship between PLR and jitter, summarized by Eq. (21).

e The packet loss description of VoIP based on microscopic packet loss behavior (modeled by a 2-state Markov chain) and
macroscopic packet loss behavior (modeled by a 4-state Markov chain).

e The self-similar behaviors of VoIP jitter.
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Finally, a relationship between the Hurst parameter and the Packet Loss Rate was found, where this relationship can be
modeled by means of a power-law function with three fitted parameters, summarized by Eq. (28). Simulation results show
the effectiveness of our models in terms of MSE.

The proposed models can be used in future to: (i) design a de-jitter buffer, (ii) to implement a synthetic generator of VoIP
jitter data traces, where the synthetic jitter data traces can be used as test vectors to carry out the performance evaluation
of a de-jitter buffer of VoIP system, and (iii) design effective schemes for packet loss recovery. As a whole, we hope that
side by side benefitting the VoIP communications modeling of present and future networks, our work would serve as a rich
reference paper in this area.
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